Devoir surveillé nº 1

Exercice 1.

Partie A

On considère l'algorithme suivant :

```
Variables: n, u, p

Saisir n entier naturel p prend la valeur 0

u prend la valeur \frac{1}{2}

Tant que (p < n) faire u prend la valeur \frac{2}{3}u - 1

u prend la valeur u prend la valeur
```

On désire faire tourner cet algorithme pour n = 4, compléter le tableau en feuille annexe (page 3) et l'affichage de u.

Partie B

Soit (u_n) la suite définie par $u_0 = \frac{1}{2}$ et pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n - 1$

- **1.** Calculer u_1 , u_2 , u_3 et u_4 .
- **2.** On pose pour tout entier naturel $n: v_n = u_n + 3$.
 - **a.** Calculer v_0 , v_1 et v_2 .
 - **b.** Démontrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.

3.

- **a.** Exprimer v_n en fonction de n.
- **b.** En déduire que pour tout $n \in \mathbb{N}$: $u_n = -3 + \frac{7}{2} \times \left(\frac{2}{3}\right)^n$
- **c.** En déduire la limite de u_n .

Partie C

- **1.** Montrer que (u_n) est minorée par -3.
- **2.** On admet que (u_n) est décroissante. Soit p un entier naturel non nul. Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0$:

$$-3 \leqslant u_n \leqslant -3 + 10^{-p}$$

3. On s'intéresse maintenant au plus petit entier n_0 . Proposer un algorithme qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier n_0 tel que, pour tout $n \ge n_0$, on ait $-3 \le u_n \le -3 + 10^{-p}$.

Exercice 2.

On considère la suite (u_n) définie sur $\mathbb N$ par :

$$u_0 = 2$$
 et pour tout entier naturel n , $u_{n+1} = \frac{u_n + 2}{2u_n + 1}$.

On admet que pour tout entier naturel n, $u_n > 0$.

- **1. a.** Calculer u_1, u_2, u_3, u_4 . On pourra en donner une valeur approchée à 10^{-2} près.
 - **b.** Vérifier que si n est l'un des entiers 0, 1, 2, 3, 4 alors $u_n 1$ a le même signe que $(-1)^n$.
 - **c.** Établir que pour tout entier naturel n, $u_{n+1} 1 = \frac{-u_n + 1}{2u_n + 1}$.
 - **d.** Démontrer par récurrence que pour tout entier naturel n, $u_n 1$ a le même signe que $(-1)^n$
- **2.** Pour tout entier naturel n, on pose $v_n = \frac{u_n 1}{u_n + 1}$.
 - **a.** Établir que pour tout entier naturel n, $v_{n+1} = \frac{-u_n + 1}{3u_n + 3}$.
 - **b.** Démontrer que la suite (v_n) est une suite géométrique de raison $-\frac{1}{3}$. En déduire l'expression de v_n en fonction de n.
 - **c.** On admet que pour tout entier naturel n, $u_n = \frac{1 + v_n}{1 v_n}$. Exprimer u_n en fonction de n et déterminer la limite de la suite (u_n) .

Feuille annexe

Nom : Prénom :

Exercice 1.

Partie A

n	4			
p	0	 	 	
и	$\frac{1}{2}$	 	 	
<i>p</i> < <i>n</i> ?		 	 	

Affichage $u = \dots$